Da complexidade física do universo ao cotidiano da sociedade: mudança, variabilidade e ritmo climático

João Lima Sant'Anna Neto
Laboratório de Climatologia da FCT/Unesp - Presidente Prudente/SP
Correio eletrônico: joalima@prudente.unesp.br

Resumo
Este artigo pretende trazer à discussão alguns conceitos básicos da climatologia na perspectiva de um possível limite físico, financeiro e social para o avanço da ciência, a partir de alguns questionamentos como: qual seria este limite? A partir de que ponto desse processo, o progresso científico se configuraria como elemento de exclusão social? Do ponto de vista da ciência global, podemos afirmar que são três os grandes vetores do conhecimento contemporâneo: a física de materiais (nanotecnologias), o genoma humano (e da vida em geral) e as mudanças climáticas (naturais e antrópicas). No caso específico dos processos climáticos, a questão das formas de apropriação do território pelos agentes sociais e econômicos torna-se especialmente relevante, uma vez que esses processos interferem diretamente nas transformações, de curto e médio prazo, dos ambientes terrestres. O arsenal tecnológico direcionado para este setor do conhecimento tem gerado mais especulações e, de certa forma, demonstrado mais limitações que aquelas de outras áreas do saber. Assim, retomamos a questão dos três conceitos mais fundamentais da Climatologia atual, que envolvem processos e dinâmicas extremamente complexas e que têm gerado enormes controvérsias nos meios acadêmicos: mudança, variabilidade e ritmo. As limitações da ciência não significam uma descrença generalizada no poder do conhecimento científico em continuar avançando, prosperando e nos surpreendendo. Significa que pensar na ciência no contexto histórico do limiar do século XXI traz em seu bojo uma crença muito maior. Mas uma crença direcionada ao ser humano e à sua capacidade de reordenar as prioridades que culminem em ações concretas que permitam a construção de um mundo mais justo e equilibrado. Como bem afirma Frei Betto (2001), um dos grandes equívocos da modernidade foi achar que a razão humana resolveria todos os problemas.

Palavras-chave

Terra Livre | São Paulo | Ano 19 - vol. 1 - n. 20 | p. 51-63 | jan/jul. 2003
Introdução

Ao apagar das luzes do século XX, depois de séculos de progressos alcançados pelo espetacular desenvolvimento tecnológico, que se iniciou com o surgimento da ciência moderna alavancada por gênios como Copérnico, Galileu e Newton, e com o fim da Guerra Fria e as transformações geopolíticas de um mundo globalizado, uma certa euforia, talvez um tanto precipitada, indicava enormes possibilidades de resolução dos grandes problemas da humanidade.

Alguns decretaram o “fim da História”, outros louvaram o pensamento único do neoliberalismo econômico e uma nova racionalidade, inspirada no produtivismo e no determinismo do meio técnico-informacional.

Ao ingressarmos no século XXI, entretanto, talvez pela primeira vez na história contemporânea, coloca-se em cheque a própria ciência (e o racionalismo), como artífice de nossos destinos. Já existem aqueles que defendem o “fim da ciência”.

Há afirmações de que o custo da ciência (que aumenta exponencialmente) resulta num ritmo de desenvolvimento tecnológico cada vez menor. Para cada nova pequena descoberta há a necessidade de investimentos, cada vez maiores, de recursos financeiros, produzindo um número, cada vez menor, de países e segmentos sociais aptos a usufruir dessas novas conquistas científicas.

Ao contrário do previsto, parece que há um limite físico, financeiro e social para o avanço da ciência. Qual seria esse limite? A partir de que ponto desse processo o progresso científico se configuraria como elemento de exclusão social?

Em entrevista ao jornalista norte-americano John Horgan, o célebre biólogo Gunther Stent, professor de Berkeley, afirmava que a ciência seria finita e limitada, senão pela amplitude do conhecimento (que ao crescer exponencialmente, gera a necessidade de mais conhecimento), mas pelo confronto com vários limites físicos, econômicos e, até mesmo, cognitivos (Horgan, 1999).

Do ponto de vista da ciência global, podemos afirmar que são três os grandes vetores do conhecimento contemporâneo: a física de materiais (nanotecnologias), o genoma humano (e da vida em geral) e as mudanças climáticas (naturais e antrópicas).

No caso específico dos processos climáticos, a questão das formas de apropriação do território pelos agentes sociais e econômicos torna-se especialmente relevante, uma vez que esses processos interferem diretamente nas transformações, de curto e médio prazo, dos ambientes terrestres.

Além disto, todo o arsenal tecnológico direcionado para esse setor do conhecimento tem gerado mais especulações e, de certa forma, demonstrado mais limitações que aquelas de outras áreas do saber.

Não é nossa intenção realizar aqui uma discussão mais aprofundada sobre os destinos da ciência contemporânea, nem teríamos fôlego para tal, mas tão-somente retomar a questão dos três conceitos mais fundamentais da Climatologia atual, que envolvem processos e dinâmicas extremamente complexas e que têm gerado enormes controvérsias nos meios acadêmicos: mudança, variabilidade e ritmo.
Mudanças climáticas

No cerne dos debates sobre as mudanças climáticas globais, enquanto alguns autores afirmam que, na atualidade, estas seriam causadas pela forma com que o homem tem produzido o ambiente, outros se mostram mais céticos, pois a história geológica da Terra ainda não permitiria uma conclusão que partisse desta premissa. Muitas questões ainda permanecem sem respostas consistentes. Afinal, as mudanças do clima são causadas apenas por fatores que ocorrem em nosso próprio planeta ou derivados de acontecimentos provenientes do sol e de nossa galáxia?

As grandes transformações da paisagem natural realizadas pelo homem, principalmente a partir da Revolução Industrial, como a devastação das florestas, a poluição urbana e industrial, a emissão de gases destruidores da camada de ozônio, entre outras, já podem ser consideradas como agentes de mudanças climáticas?

O aquecimento global é de origem antrópica ou é apenas parte de um ciclo natural de longa duração, ou seja, uma probabilidade estatística sem maiores consequências?

O problema é que muitos aspectos a serem considerados ainda dependem de estudos mais aprofundados, como o ciclo das manchas solares, o efeito das erupções vulcânicas, as alterações do campo magnético e da órbita terrestre, além da intervenção da sociedade nos ambientes naturais. Não há dúvida que todos esses fatores têm papel importante na variabilidade e na mudança do clima terrestre. A combinação desses elementos, entretanto, pode afetá-lo de tal maneira que acabe por destruir seu frágil equilíbrio (Sant’Anna Neto, 2000).

Mas é importante lembrar que o que consideramos como um clima normal para o planeta advém das condições glaciais que têm persistido durante os últimos milhões de anos. Entretanto, o clima da Terra nos últimos dez mil anos, quando emergiu o gênero humano como uma espécie inteligente, é notavelmente anormal, pois se caracteriza pelas condições interglaciais, ou seja, por pequenos períodos ligeiramente mais quentes.

Assim, estamos vivenciando uma fase que pode ser considerada como de exceção, visto que os períodos glaciais, mais frios, são a regra geral. Por estes e outros motivos, o nosso planeta tanto pode estar prestes a conhecer um forte aquecimento global como a iminência de uma nova era glacial.

As mudanças climáticas globais ocorreram sistematicamente desde a formação da atmosfera terrestre. Na história geológica, três grandes glaciações se sucederam há cerca de 750, 500 e 250 milhões de anos, aproximadamente, quando as temperaturas médias do planeta estiveram entre 11°C e 13°C. Nesse período, os interglaciais registraram temperaturas que variaram entre 17°C e 20°C (Bryant, 1997).

Essas glaciações são explicadas por processos astronômicos relacionados aos três movimentos terrestres que foram primeiramente explicitados por Milankovitch: excentricidade da órbita circumsolar da Terra; inclinação do eixo terrestre; e precessão dos equinócios. Além disto, também associados aos longos períodos de atividade vulcânica.

Desde o início do Quaternário (último milhão e meio de anos), nosso planeta experimentou, praticamente, uma grande glaciação a cada cem mil anos. A última delas, a de Würm, encerrou-se há cerca de dez mil anos. As glaciações quaternárias provocaram quedas
da temperatura média da Terra, que atingiu valores entre 8°C e 10°C (a média dos últimos 30 anos – normal – é de 15,7°C).

No Holoceno, a temperatura média tem oscilado entre 14°C e 16°C até o tempo presente, com os picos máximos registrados há cerca de sete mil anos (no optimum do Holoceno) e entre os séculos XII e XIII (aquecimento da Idade Média). Dois outros períodos foram marcados pelas baixas temperaturas: há três mil anos atrás e entre os séculos XV e XIX, na pequena idade do gelo (Figura 1).

Uma observação atenta dessa figura, demonstra que, nos últimos dez mil anos (Holoceno), a temperatura da Terra variou pouco, quando comparada com épocas geológicas mais antigas, apresentando amplitudes que não chegaram a atingir 2°C.

As projeções elaboradas a partir dos modelos climáticos para as próximas décadas são conflitantes e contraditórias e uma das grandes dificuldades está na definição da variabilidade do clima, tanto no que se refere à sua dinâmica quanto no entendimento dos fatores que ocasionam os ciclos e a periodicidade de seus elementos.

Figura 1
Variações da temperatura da Terra ao longo do tempo geológico (adaptado de Bryant, 1997)

De acordo com a Organização Meteorológica Mundial (OMM, 1966), mudança climática abrange todas as formas de inconstâncias climáticas, independente da sua natureza estatística, escala temporal ou causas físicas. Pode ser considerada como qualquer alteração de um dos principais elementos do clima que persista por mais de 30 anos. Desta forma, as mudanças climáticas globais não necessitam ser causadas por atividades naturais ou antrópicas situadas em todas as regiões da superfície terrestre. O importante é que, através das relações causais, os efeitos e impactos das atividades que as originam, numa reação em
cadeia, podem atingir outras áreas cujas consequências, agora ampliadas, assumem maior proporção territorial, tornando-as globais.

Entretanto, encontram-se muitas dificuldades para a avaliação e a correta compreensão das variações dos atributos climáticos no tempo e no espaço, pois além das séries de dados meteorológicos de superfície não serem suficientemente longas e apresentarem falhas, nos raros casos de séries temporais adequadas, é muito difícil separar as oscilações climáticas naturais daquelas resultantes dos processos decorrentes das atividades humanas.

Além disto, devemos levar em consideração que a imensa maioria das estações meteorológicas espalhadas pelo planeta se encontram em áreas urbanizadas ou muito próximas a elas, o que acaba por dificultar uma análise consistente, pois essas estações passaram a registrar mais o clima urbano do que as condições climáticas regionais.

Assim, percebemos que o grau de dificuldade para avançar no conhecimento das mudanças climáticas, em função da magnitude e da complexidade dos fenômenos intervenientes neste processo, assume proporções gigantescas, de difícil resolução nas últimas décadas, já que os principais fatores necessários para o desvendamento desses mecanismos – a reconstituição dos climas pretéritos e a consolidação de longas séries temporais – ainda não estão disponíveis.

Todas essas limitações impedem que possamos transformar a hipótese da mudança climática recente pelo aquecimento global em fato científico consumado.

Variabilidade climática

O conceito de variabilidade pode ser definido como a maneira pela qual os elementos climáticos variam no interior de um determinado período de registro – de uma série temporal (Cuadrat; Pita, 1997; IPCC, 1995). Alguns desses elementos, como as precipitações pluviométricas, se apresentam mais irregulares do que outros, como a temperatura, por exemplo.

O desafio que se coloca é o reconhecimento, com um grau mínimo de confiabilidade, da distribuição dos registros ao longo do tempo e a compreensão dos mecanismos que os definem. No caso da temperatura, existe um forte componente sazonal relacionado à radiação solar, que imprime uma marcha anual mais ou menos bem definida. A pluviosidade, entretanto, mostra-se muito mais complexa, uma vez que os mecanismos dinâmicos que produzem as chuvas variam (muitas vezes de modo aleatório ou quase caótico) em escala temporal muito reduzida, permitindo que se consiga explicar os processos apenas depois do episódio ter ocorrido.

A variabilidade dos elementos climáticos também é definida por ciclos (constantes ou quasi-periódicos) que se repetem em intervalos fixos de tempo. Alguns fenômenos que apresentam fortes correlações com as variações do clima, como a ciclicidade das manchas solares, ocorrem a cada período de 11 anos. Entretanto, na metade deste ciclo (cerca de 5,5 anos), estabelecem-se relações harmônicas, em geral mais suaves, mas suficientes para provocar ruídos nas séries temporais (Bryant, 1993).

Os episódios de El Niño/oscilação sul (ENOS), por exemplo, parecem apresentar periodicidades de 22, 11, 6 e 3 anos, de diferentes magnitudes e, portanto, responsáveis por graus variados de impactos regionais (IPCC, 1995).
Os ciclos lunares, que ocorrem a cada 18,6 anos (harmonicamente a ciclos de 9,3 anos), também afetam a variabilidade climática, produzindo relações determinísticas com alguns dos elementos atmosféricos, principalmente com o regime das chuvas.

Além disto, as atividades vulcânicas, principalmente as que emitem material piroclástico (fumaça quente composta principalmente de dióxido de carbono) e enormes quantidades de lahars e gases sulfurosos e clorídricos, provocam flutuações no clima que podem durar de 3 a 4 anos (Barriendos; Gómez, 1997). O século XX foi relativamente fraco em erupções vulcânicas se comparado com os séculos XVIII e XIX, mas, mesmo assim, um único exemplo, o da erupção do Monte Agung na Indonésia, em 1963, lançou mais gases do tipo CFC e dióxido de carbono para a atmosfera do que todas as emissões de origem antrópica daquele ano (Bryant, 1997).

Entretanto, nem todos os episódios extremos são explicados por esses fatores, ou seja, parecem existir outros processos de origem oceânica e planetária ainda não bem determinados. Molion (1998) levanta a hipótese de uma conexão Júpiter, maior planeta do sistema solar, que descreve uma órbita em torno do sol a cada período de 11 anos e que ativaria processos dinâmicos da superfície solar e influenciaria a circulação atmosférica terrestre.

Na Figura 2, apresentamos a série temporal de temperatura de Campinas, para o segmento temporal de 1890 a 1999, com os registros de alguns dos processos cíclicos, que poderiam influenciar a sua variabilidade.

Figura 2

Variabilidade anual da temperatura de Campinas (1890 a 1999) e registros de processos cíclicos conhecidos

Já as secas periódicas do sertão semi-árido do Nordeste brasileiro são identificadas tanto com episódios de ENOS quanto com ciclos das manchas solares (11 e 22 anos).

O que colocamos em discussão, a partir destas considerações, é o fato de que, mesmo conhecendo alguns dos padrões de comportamento cíclico, ainda não tem sido possível elaborar um modelo de previsão que contemple todas as variáveis intervenientes nos processos climáticos (Figura 4).

Além disto, muitas interações e teleconexões entre os processos atmosféricos, terrestres, oceanicos e cósmicos podem nunca vir a ser totalmente esclarecidos, em função do grau de complexidade que os envolvem.

Outro fator que parece ser igualmente complexo se refere ao problema da escala desses processos e suas correspondentes repercussões no espaço. Sabemos que, se a escala zonal generaliza, pelas leis gerais da influência da latitude sobre a radiação – fundamento básico da energia terrestre –, a escala local diversifica, pela influência dos múltiplos e pequenos fatores das diferentes esferas do domínio geográfico (Monteiro, 1991).

Figura 3
Isto nos remete a considerações sobre outra ordem escalar, a escala temporal. Se não bastassem as limitações impostas pela questão espacial, temos, ainda, as dificuldades de inter-relação entre as dinâmicas geológicas e as humanas e socioambientais.

Este conjunto de fatores e processos interage entre si, das mais variadas formas e com as mais complexas magnitudes, nas diferentes escalas espaço-temporais e se manifesta num determinado ponto da superfície terrestre, numa velocidade e num nível de interações tal que a sua previsibilidade se transforma quase num jogo.

Assim, ao propormos uma análise climática metodologicamente comprometida com os propósitos da Geografia, ao abordarmos os processos climáticos na escala local (ou mesmo regional), decompondo o segmento de tempo ao nível diário (ou mesmo horário), como estabeleceu Monteiro (1971) em sua proposta de análise rítmica, pressupomos um altissíssimo sistema de controle das variáveis atmosféricas e antropogênicas, impossíveis de serem atingidas com o instrumental disponível na atualidade.

Como bem salientou Molion (1998), "...a variabilidade climática resulta do efeito integrado de tudo o que se passa no Universo e não apenas de interações internas ao sistema oceano-continente-atmosfera. O albedo planetário, juntamente com o efeito estufa, são os mais importantes controladores climáticos. Sua variabilidade interanual deve, portanto, ser a principal causa das flutuações climáticas".

Ritmo climático

No âmbito da Geografia, admitemos que a única maneira possível de conceituar e fundamentar a noção de ritmo climático é: "...somente através da representação concomitante dos elementos fundamentais do clima em unidades de tempo cronológico pelo menos diárias, compatíveis com a representação da circulação atmosférica regional, geradora dos estados atmosféricos que se sucedem e constituem o fundamento do ritmo." (Monteiro, 1971).

Essa definição torna clara a distinção da perspectiva geográfica de análise do clima com relação à Meteorologia ou à Agronomia, pois fundamenta uma compreensão genética e qualitativa dos fatos climáticos ao nível da baixa atmosfera (troposfera), considerando-a como a camada antrópica de interação geográfica.

Monteiro argumentava ainda que somente a "...análise rítmica detalhada ao nível de tempo, revelando a gênese dos fenômenos climáticos pela interação dos elementos e fatores, dentro de uma realidade regional, é capaz de oferecer parâmetros válidos à consideração dos diferentes e variados problemas geográficos desta região" (1971).

Destas forma, a concepção geográfica do clima na organização do espaço deve ser vista, fundamentalmente, como a geradora de tipos de tempo cujas características são absolutamente dinâmicas, complexas e muito sensíveis a qualquer alteração imposta, influenciando cada parte do planeta, em função da interação entre as diferentes esferas do globo e da ação dos agentes sociais.

Outro aspecto importante trata da necessidade de incorporar a dimensão social na interpretação do clima na perspectiva da análise geográfica. Isto significa, necessariamente, compreender que as repercussões dos fenômenos atmosféricos na superfície terrestre se dá num território transformado e produzido pela sociedade de maneira desigual e apropriado segundo os interesses dos agentes sociais.
Figura 4
Ciclos de variáveis naturais e suas relações com a variabilidade do clima

<table>
<thead>
<tr>
<th>Ano</th>
<th>Ciclo Lucio</th>
<th>Manchas Solares</th>
<th>Última Neve</th>
<th>Afundamento</th>
<th>ENOS</th>
<th>Secas Chuvosas</th>
<th>Calor Freio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1908</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1916</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1918</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1922</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1928</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1932</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1935</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1937</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1939</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1942</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1947</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
O modo de produção capitalista territorializa distintas formas de uso e ocupação do espaço definidos por uma lógica que não atende aos critérios técnicos de desenvolvimento (ou sociedade?) sustentável. Assim, o efeito dos tipos de tempo sobre um espaço construído de maneira desigual gera problemas de origem climática, também desiguais. A entrada de um sistema atmosférico, como uma frente fria (fronte polar atlântica), por exemplo, espacializa-se de maneira mais ou menos uniforme num determinado espaço, em escala local. Entretanto, em termos socioeconômicos, esse sistema produzirá diferentes efeitos em função da capacidade (ou possibilidade) que os diversos grupos sociais têm para defenderem-se de suas ações (Sant'Anna Neto, 2001).

Se o resultado concreto da entrada dessa frente fria, em área urbana, for a queda de precipitação em grandes quantidades e se o produto final dessa ação desembocar numa enchente, temos que admitir que muito provavelmente as áreas mais atingidas pelas águas deverão ser aquelas onde os equipamentos urbanos e o poder público funcionam de forma mais precária, pois as enchentes não atingem e não afetam a todos da mesma maneira.

Outro exemplo que podemos considerar de forma muito clara é o da relação entre clima e rentabilidade das culturas agrícolas. Tomemos, como exemplo, um ano atípico, irregular (ou de padrão excepcional), em que o regime pluviométrico não tivesse atingido às expectativas dos produtores rurais, em função das necessidades fenológicas de uma dada cultura e que este fato tivesse tido uma dimensão espacial ao nível regional. Analisando este evento apenas através da perspectiva climática, como é feito no âmbito da Climatologia Geográfica, utilizando-nos da análise rítmica, poderíamos facilmente identificar os sistemas atmosféricos atuantes e, associando-os ao balanço hídrico e ao calendário agrícola, teríamos uma explicação muito concreta do porquê desta irregularidade.

Além disto, com os dados de produção e área de uma cultura, obteríamos a sua rentabilidade e demonstraríamos a relação entre a provável diminuição da rentabilidade em função dos padrões pluviométricos desse evento. Entretanto, esses procedimentos não permitem uma compreensão das dimensões sociais, políticas e econômicas envolvidas nesse processo, pois não se incorporam nessa análise essas perspectivas, que são eminentemente geográficas.

Deveríamos levar em consideração, portanto, que determinadas políticas públicas para o setor da agricultura privilegiam o grande agricultor que, capitalizado, tem capacidade de obter e se utilizar do aparato tecnológico (semente selecionada, período menor de ciclo vegetativo da cultura diminuindo, assim, a possibilidade de risco, irrigação, controle de pragas etc.).

Desta forma, numa mesma região, um evento climático irregular pode ser extremamente prejudicial ao pequeno agricultor, descapitalizado, destecnificado e sem potencial cooperativo, mas não atingir com a mesma magnitude os grandes complexos agroindustriais.

Num estudo sobre as relações entre chuva e soja no estado do Paraná, Almeida (2000) demonstrou que, em áreas inseridas num contexto de forte modernização da agricultura, essa relação de dependência é inferior a 50%, enquanto em áreas tradicionais, a dependência da rentabilidade da soja com relação às precipitações pluviométricas é superior a 70%.

O clima, tratado como insumo no processo de apropriação e de produção da natureza, assume um papel variado na medida em que as diferentes sociedades (e dentro delas, os distintos grupos sociais) se encontram em momentos diferentes em relação ao processo de
globalização e de mundialização e que, num mesmo território, uma sociedade desigual, estruturada em classes sociais, não dispõe (ou sua lógica assim não o permite) dos mesmos meios para lidar com a ação dos fenômenos atmosféricos de forma a minimizar ou otimizar os seus efeitos para todos os segmentos sociais.

Se em alguns territórios o clima ainda exerce papel determinante, em função do estágio do aparato tecnológico e do desenvolvimento econômico, em outros, a sofisticada tecnificação e as relações de produção altamente modernas minimizam os efeitos adversos da dinâmica climática sobre seus territórios. Assim, esta relação clima-sociedade não mais se dá na dimensão do homem enquanto raça, ou indivíduo, mas sim no contexto do homem como ser social e inserido numa sociedade de classes.

Os episódios climáticos extremos (no sentido de sua variabilidade) associados a certos tipos de tempo (na conceituação do ritmo climático) assumem um grau de complexidade ainda maior do que aqueles já retratados anteriormente, pois o nível de especialização dos processos em escalas locais, combinados com as formas de apropriação do território pelos agentes sociais, resulta num conjunto de relações contraditórias e imensamente mais sofisticadas.

Considerações finais

Ao final desta reflexão, minha maior intenção, definitivamente, não foi a de tentar desconstruir o processo do conhecimento científico. Nem teria bagagem intelectual para tal. O que pretendi, sinceramente, foi levantar questões que podem inclusive se direcionar na contramão da tendência geral, que tem sido a de cultivar a perspectiva de que a ciência (e o racionalismo científico) é ilimitada e que, através de seu desenvolvimento, poderão ser solucionados todos os problemas e demandas colocadas pela sociedade.

Bentley Glass argumentava, em um artigo da Science, que tão rápido tem sido o crescimento da ciência em nosso século que criamos a ilusão de pensar que podemos manter esse ritmo de crescimento indefinidamente (Horgan, 1990).

A decodificação do Universo (a grande utopia da ciência contemporânea) pode ser uma grande falácia. Ao mesmo tempo em que os astrônomos, que já sondaram as regiões mais remotas do Universo, não conseguem ver o que existe além de suas fronteiras; os físicos norte-americanos que desenvolviam trabalhos no gigantesco acelerador de partículas, em busca de algo além dos quarks e elétrons, tiveram um fim inesperado quando o congresso dos EUA se recusou a continuar financiando este megaprojeto ao custo de 8 bilhões de dólares, soma maior que os PIB's de dezenas de países pobres da América Latina, África e Ásia. Se o ritmo de crescimento da ciência produzida no pós-guerra tivesse continuado, teria consumido todo o orçamento do mundo industrializado (Horgan, 1999).

Acredito que essas limitações não significam uma descência generalizada no poder do conhecimento científico em continuar avançando, prosperando e nos surpreendendo. Significa que pensar na ciência no contexto histórico do limiar do século XXI traz em seu bojo uma crença muito maior. Mas uma crença direcionada ao ser humano e a sua capacidade de reordenar as prioridades que culminem em ações concretas que permitam a construção de um mundo mais justo e equilibrado. Como bem afirma Frei Betto (2001), o grande equívoco da modernidade foi achar que a razão humana resolveria todos os problemas.
Bibliografia

RESUMEN
Este artículo pretende poner en discusión algunos conceptos básicos de climatología, dentro de la perspectiva de un posible límite físico, financiero y social para el progreso de la ciencia, partiendo de algunos cuestionamientos, tales como: ¿Qué límite sería ese? ¿A partir de qué punto de ese proceso el progreso científico se configuraría como un elemento de exclusión

ABSTRACT
This article discusses some basic climatology concepts from the perspective of its possible physical, financial and social limits for the progress of science, starting from some questions like: Which would these limits be? From what point of this process on, would scientific progress begin to be an element of social exclusion? From a global science point of view,
social? Desde el punto de vista de la ciencia global, puede afirmarse que son tres los mayores vectores del pensamiento contemporáneo: la física de los materiales (nanotecnología), el genoma humano (y de la vida, en general) y los cambios climáticos (natural y antrópico). En el caso específico de los procesos climáticos, la cuestión de las maneras de apropiación del territorio por los agentes sociales y económicos adquiere especial importancia, una vez que esos procesos afectan directamente las transformaciones de corto y medio plazo de la atmósfera terrestre. El arsenal tecnológico usado en esa sección del conocimiento ha generado otras especulaciones y, de cierto modo, demostrado mayores limitaciones que las que aparecen en otras áreas del conocimiento. Así nosotros retomamos el tema de los tres conceptos más fundamentales de la climatología actual, que involucra procesos y una dinámica sumamente compleja, lo que ha estado generando enormes controversias en los medios académicos: el cambio, la variabilidad y el ritmo. Las limitaciones de la ciencia no significan un escepticismo extendido sobre el poder del conocimiento científico en continuar avanzando, prosperando y sorprendiéndonos. Frente al contexto histórico del umbral del siglo XXI, la ciencia proyecta una fe muy grande, una fe que se dirige al ser humano y a su capacidad de reorganizar las prioridades que culminen en acciones concretas, permitiendo la construcción de un mundo más justo y equilibrado. Como afirma Frei Betto (2001), uno de los grandes errores de la modernidad es pensar que la razón humana resolverá todos los problemas.

PALABRAS-CLAVE

Key Words

Recebido para publicação em 6 de dezembro de 2002.