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Abstract

Public health policies to contain the spread of COVID-19 rely mainly on
non-pharmacological measures. Those measures, especially social distancing, are a
challenge for developing countries, such as Brazil. In São Paulo, the most populous state
in Brazil (45 million inhabitants), most COVID-19 cases up to April 18th were reported
in the Capital and metropolitan area. However, the inner municipalities, where 20 million
people live, are also at risk. As governmental authorities discuss the loosening of measures
for restricting population mobility, it is urgent to analyze the routes of dispersion of
COVID-19 in those municipalities. In this ecological study, we use geographical models of
population mobility as patterns for spread of SARS-Cov-2 infection. Based on
surveillance data, we identify two patterns: one by contiguous diffusion from the capital
metropolitan area and other that is hierarchical, with long-distance spread through major
highways to cities of regional relevance. We also modelled the impact of social distancing
strategies in the most relevant cities, and estimated a beneficial effect in each and every
setting studied. This acknowledgement can provide real-time responses to support public
health strategies.

Introduction

The International Health Regulations (IHR), administered by World Health
Organization (WHO), was last revised in 2005, under the influence of the global
response to the SARS emergency and of the risk of the H5N1 influenza pandemic [1].
Since then, it has guided coordinated international cooperation during public health
emergencies such as Zika virus and Ebola epidemics [2]. However, the current
COVID-19 pandemic is the greatest challenge faced by IHR thus far [3]. Although, the
WHO has issued several guidelines related to the current epidemic, the level of
adherence varies among nations and, inside nations, provinces and states [4].
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Up to the present day, non-pharmacological interventions, like social distancing, 10

radical lockdown and extensive testing for SARS-Cov-2 infection, have been applied by 11

different countries, with widely varying degrees of success [5, 6]. In some countries, such 12

as Brazil, scientific research on the effectiveness of those strategies have been severely 13

hampered by political bias, which interferes with public health decisions [7]. 14

São Paulo, Brazil’s most populous State (45 million inhabitants), is also the most 15

severely affected by COVID-19. The State governor has challenged Brazil’s President 16

denialism of the pandemic, and declared closure of commerce, schools and other 17

non-essential services. However, despite ferocious spread of the virus on the State 18

Capital and metropolitan area, the slowly evolving of the epidemic in the inner cities of 19

the state, where 20 million people live, has led to protests against governmental 20

measures. In this context, there is a sense of urgency about predicting routes of 21

spreading of the epidemic in the inner State and the risks for the population that 22

resides there. 23

Here, we discussed a detailed analysis of the spatial diffusion of COVID-19 in São 24

Paulo State, Brazil, with the objective of providing real-time responses to support 25

public health strategies. This approach can be done in other states of Brazil as well as 26

in other developing countries [8]. 27

Methods 28

Geographical data modelling 29

Spatial analysis of surveillance data includes exploratory data analysis, spatial 30

modelling and visualization [9]. The first one uses spatial statistical methods to measure 31

centrality and dispersion of data sets in order to detect spatial patterns and to examine 32

relationships between variables of the complex phenomenon under investigation. The 33

second one examines the elementary forms of spatial organization that explains the 34

phenomenon under study, such as railways, land cover, demographic and also social 35

factors [10]. Lastly, visualization provides a synthesis of the previous procedures, aiming 36

the elaboration of a thematic map that can be presented to managers for decision 37

making in emergency situations in public health. 38

Focusing in the State of São Paulo, its center and periphery structure, main roads 39

and network structure that gives population and trade mobility, the geographic spread 40

of coronavirus was studied. For this, the date of the first confirmed case in each 41

municipality in São Paulo State were centered at the city hall location. The six nearest 42

neighbors (with reported cases) of each point s0 were used in the interpolator; and the 43

contribution of each one was weighted by the inverse of its distance. Therefore, 44

assuming that the measured values closest to the prediction location have more 45

influence on the predicted value those far away, the following equation was used 46

ẑ(s0) =
6∑

i=1

wiz(si),

where ẑ(s0), wi and z(si) are the estimated value at position s0, the weight attributed 47

to each pair of coordinates (1/|si − s0|) and the number of cases observed at position si. 48

The gradient maps were constructed using surveillance data (number of confirmed cases 49

of coronavirus) updated on Abril 15th, 2020. 50

Out of 645 municipalities in São Paulo State, 145 have confirmed cases and were 51

used in the study. The interpolator created a surface on which the values from points 52

(municipalities) are combined and recorded in a data matrix, simplifying information 53

and creating regional patterns. As it has spatiotemporal data, it must be read with the 54
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darkest data in the red palette as the oldest that passes through the orange, yellow 55

going to the blue palette, which are the municipalities that were later infected. 56

In the second step, data about each municipalities such as infrastructure, facilities, 57

land use, jobs, and urban mobility were used to identify the fundamental entities of the 58

spatial structure that triggers coronavirus dispersion in São Paulo territory [11]. In the 59

visualization step, we attempted to produce a map that could be understandable by 60

health authorities and community [8, 9]. The proportional symbol maps scale was used 61

to size the circles proportionally to the number of confirmed cases in each municipality. 62

Standard deviation ellipses were drawn to show, at different times, the main direction of 63

disease spreading. Our maps were constructed based on principles of graphic semiology, 64

theory of colors, and visual communication [9, 12,13]. 65

Epidemic modelling 66

A deterministic age structured model splits the human population into age groups, from 67

0 to 4 years, 5 years interval from 5 to 70 years, and greather that 70 years. The 68

variables of the model are t, Si := Si(t), Ei := Ei(t), Ii := Ii(t), Ri := Ri(t); respectively, 69

time, susceptibles, exposed, infected, and recovered individuals. The index i takes into 70

account the age class. The natural mortality rate µ appers in all age classes, and the 71

parameter αi deals with transition among age classes. Individuals born susceptible, and 72

become exposed after contacting infected individuals at rate β. The parameter ci,j 73

represents the fraction of daily contacts between individuals at age group i and j [14]. 74

The parameter ξ ∈ [0, 1] takes into account the effect of social distancing. After a period 75

of time η−1 exposed individuals becomes infectious. Additional mortality related to the 76

disease is considered in the compartiments of infected individuals, σi, and it is 77

calculated through the expression 78

σi = −γ ln(1− pi),

where pi is the probability that an individual at age group i dies during his infectious 79

period. We have p1 = p2 = 0, p3 = ... = p8 = 0.002, p9 = p10 = 0.004, p11 = p12 = 0.013, 80

p13 = p14 = 0.036, and p15 is weighted by the number of individuals in age group with 81

more than 80 years old (x1) and in the age group between 75 to 79 years old (x2) giving 82

p15 =
0.148x1 + 0.08x2

x1 + x2
.

Finally, infected individuals become recovered at rate γ. The ordinary differential 83

system is written in terms of population density 84

dSi+1

dt
= µ δi+1,1 + αiSi − ξβ

15∑
j=1

ci+1,j
Ij
nj
Si+1 − (µ+ αi+1)Si+1

dEi+1

dt
= αiEi + ξβ

15∑
j=1

ci+1,j
Ij
nj
Si+1 − (µ+ αi+1 + η)Ei+1

dIi+1

dt
= αiIi + ηEi+1 − (σi+1 + µ+ αi+1 + γ)Ii+1 (1)

dRi+1

dt
= αiRi + γIi+1 − (µ+ αi+1)Ri+1

with i = 0, ..., 14, α0 = α15 = 0, and αj = α, j 6= {0, 15}, δ1,1 = 1, and δj,1 = 0, j 6= 1. 85

Besides, nj = Sj + Ej + Ij +Rj . Table 1 summarizes model parameters, their 86

description, range of values and units. 87

Disease control is modelled as a reduction of 50% of the contact matrix and starts at 88

t = 0 [15,16]. In all cases R0 ≈ 2.7. The simulations start with ten infected individuals 89

(in the age class of 25 to 50 years) introduced in a whole susceptible population. 90
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Table 1. Parameters of the model, their descritption and values.

Parameter Description Value
µ mortality rate 1/75 years−1

α transition rate among age classes 1/5 years−1

σ additional mortality rate [0, 0.02] days−1

β infection rate 0.44 days−1

η−1 latent period 3 days
γ−1 infectious period 6.4 days
ξ reduction on the contact rate 0.5

Results and Discussion 91

The exploratory analysis of data on confirmed COVID-19 cases in São Paulo State 92

generated a diffusion map in which a color spectrum indicates de areas ranging from the 93

earlier to more recent introduction of SARS-Cov-2 (Fig 1). 94

Fig 1. Diffusion map for COVID-19 in São Paulo State Brazil, up to April
18, 2020. The color spectrum indicates the areas of early (in red) to those of more
recent COVID-19 introduction (in blue).

Based on the results of the exploratory analysis and previous population mobility 95

studies in the State of São Paulo, two dispersion patterns were postulated. In the first 96

one, virus dispersion occurs by contiguity, from a region of initial introduction, that is 97

the Metropolitan Region of the Capital, the City of São Paulo (contagious diffusion) to 98

it nearest neighborhoods. In the second one, there is a long-distance dispersion 99

following structural axes (highways) that connect São Paulo city to pole municipalities 100

of regional importance (hierarchical diffusion). From these, diffusion by contiguity 101

occurs again to smaller municipalities. Fig 2 presents the diffusion axes, while Fig 3 102

shows the municipalities of regional relevance for the disease spread. 103

In the next step, we simulated a susceptible-exposed-infected-recover (SEIR) model 104

for each city of regional influence, with or without social distancing measures [16,17]. 105

The results are shown in Figs 4 and 5. Demographic characteristics and number of 106

confirmed COVID-19 cases (up to April 18, 2020) are presented in Table 2. 107

As one can infer from Fig 3 and Table 2, there is great heterogeneity in inner São 108

Paulo State, and some cities have special relevance due to their geographic localization, 109

either proximity to São Paulo City or laying alongside high mobility highways. 110

Simulations (Figs 4 and 5) show that, in those municipalities, social distancing 111

measures can mitigate the impact of pandemics in a way that is much similar to what 112

has been demonstrated for São Paulo City metropolitan area [18, 19]. We can also note 113
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Fig 2. Elementary spatial structures associated to COVID-19 spread in São
Paulo State, Brazil.

that Campinas, São José dos Campos and Santos, all contiguity to São Paulo city, are 114

strongly affected by the spatio-temporal evolution of the disease at the metropolitan 115

area of São Paulo, while rural municipalities are less affected. Santos, that has a huge 116

mortality per 100,000 inhabitants, is the one in the list which has the biggest number of 117

older population (≥ 50 years). 118

Though our research has the limitations inherent to the ecological study design [11], 119

our predictions of routes and risks of COVID-19 in inner São Paulo State (Fig 2) have 120

been thus far validated by surveillance data (Fig 3). Given the extensive mobility 121

between smaller municipalities and those cities with regional economic relevance [11], it 122

is reasonable to infer that the regional spread of SARS-Cov-2 infections depends on the 123

success of non-pharmacological strategies applied in the latter. 124

São Paulo State distancing measures started on March 22nd and is presently under 125

heavy pressure from several sectors of industry and trading companies. As the local 126

government hints at the possibility of loosening restrictive measures, it is urgent to 127

provide a way of protecting the population health. We also state that similar 128

methodological approaches can direct public health strategies in other developing 129

countries, especially those that either have great territorial extension and/or have 130

diverse patterns of urbanization and mobility. 131

Conclusion 132

Spatial analysis of coronavirus spread can provide are an important tool for public 133

health management, highlighting the routes of disease dispersion and the fragility of 134

municipalities related to its socio-demographic characteristics. The main routes of 135

dispersion from Capital to inner State are the hallways that give mobility to people and 136

merchandise. Currently, non-pharmacological controls are the only tools to control 137

disease spreading among individuals and municipalities. The existence of two different 138

ways of disease dispersal, by standard diffusion and hierarchical one can provide 139

alternative strategies to control disease spread. 140

April 26, 2020 5/10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2020. .https://doi.org/10.1101/2020.04.26.20080895doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.26.20080895
http://creativecommons.org/licenses/by-nc-nd/4.0/


141

142

143

144

Fig 3. Distribution of confirmed COVID-19 cases in São Paulo State as of 
April 18th 2020, Brazil, with identification of municipalities that influence 
regional spread.
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Table 2. Epidemiologic COVID-19 data for São Paulo State capital and cities of regional importance.

Municipality
Population Dist. 1 Incid.3 Cumul. Mort.Cumul. 3 SRD SRD3

(inhabitant) (Km)
Connection with
the Capital2 cases deaths incid.

12252023 - - 9815 80.11 715 5.84 14078 114.90
433311 55 Contiguity 310 71.54 19 4.38 209 48.23
1204073 95 Contiguity 192 15.95 7 0.58 652 54.15
721944 91 Contiguity 136 18.84 3 0.42 301 41.69
703293 314 Primary axis 81 11.52 5 0.71 323 45.93
251983 231 Primary axis 9 3.57 2 0.79 138 54.77
679378 100 Secondary axis 50 7.36 9 1.32 216 31.79
460671 440 Secondary axis 71 15.41 7 1.52 268 58.18
404142 162 Secondary axis 21 5.20 2 0.49 124 30.68
376818 343 Secondary axis 58 15.39 3 0.80 127 33.70

São Paulo (capital)
Santos
Campinas
São J. dos Campos
Ribeirão Preto
São Carlos
Sorocaba
São J. do Rio Preto
Piracicaba
Bauru
Araraquara 236072 273 Secondary axis 49 20.76 2 0.85 74 31.35

228743 550 Secondary axis 6 2.62 2 0.87 47 20.55
197016 530 Secondary axis 39 19.80 0 0.00 45 22.84
146497 230 Secondary axis 27 18.43 2 1.37 70 47.78
122098 424 Secondary axis 9 7.37 0 0.00 50 40.95
94547 519 Secondary axis 9 9.52 0 0.00 42 44.42
77496 384 Secondary axis 2 2.58 0 0.00 45 58.07

Presidente Prudente
Araçatuba
Botucatu
Barretos
Votuporanga
Bebedouro
Registro 56322 175 Secondary axis 4 7.10 1 1.78 25 44.39

1. distance from the capital; 2. classification according to Fig 3; 3. incidence or mortality per 100,000 inhabitants; 3. number of hospital
admissions for severe respiratory disease (SRD).
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Fig 4. Temporal evolution of the epidemics. From top to bottom and left to
right we have São Paulo, Santos, Campinas, São José dos Campos, Ribeirão Preto, São
Carlos, Sorocaba, São José do Rio Preto, Piraciaba and Bauru. The continuous and
dashed lines correspond to the case without control and with control.
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Fig 5. Temporal evolution of the epidemics. From top to bottom and left to
right we have Araraquara, Presidente Prudente, Araçatuba, Botucatu, Barretos,
Votuporanga and Bebedouro. The continuous and dashed lines correspond to the case
without control and with control.
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